Helicity asymmetry measurements for π^0 photoproduction with FROST

> Hideko Iwamoto CLAS Collaboration

The George Washington University May 18, 2011

Outline

1. Motivation

Study the nucleon resonances and nucleon structure

2. FROST Experiment

Polarize both beam and target

3. Data Analysis

Event selection for $\gamma p \rightarrow \pi^0 p$

4. Results

Comparison with theoretical models

5. Conclusion

Nucleon Resonance

Mass, width, coupling constants... are not well known

	Particle	$L_{\rm 2I,2J}$	BW mass	BW width	$decay \rightarrow N \pi$	status
Breit-Wigner (conventional)	N(1440)	P_{11}	1440	300	0.55 - 0.75	****
masses and overall status	N(1520)	D_{13}	1520	115	0.55 - 0.65	****
of N and Λ	N(1535)	S_{11}	1535	150	0.35 - 0.55	****
- estimation by Particle	N(1650)	S_{11}	1655	165	0.60 - 0.95	****
	N(1675)	D_{15}	1675	150	0.35 - 0.45	****
Data Gloup (Neview Of	N(1700)	D_{13}	1700	100	0.05 - 0.15	***
particle physics 2010)	N(1710)	P_{11}	1710	100	0.10 - 0.20	***
	N(1720)	P_{13}	1720	200	0.10 - 0.20	****
	N(1900)	P_{13}	1900			**
**** Existence is certain	N(2080)	D_{13}	2080			**
*** Existence ranges from	<u>N(2090)</u>	<u>S</u> ₁₁	2090			*
very likely to certain.	$\Delta(1232)$	P_{33}	1232	118	1.00	****
** Evidence of existence	$\Delta(1600)$	P_{33}	1600	350	0.10 - 0.25	***
is only fair.	$\Delta(1620)$	<i>S</i> ₃₁	1630	145	0.20 - 0.30	****
* Evidence of existence	$\Delta(1700)$	D_{33}	1700	300	0.10 - 0.20	****
is poor.	$\Delta(1750)$	P_{31}	1750			*
	$\Delta(1900)$	S_{31}	1900	200	0.10-0.30	** 3

FROST (FROzen Spin Target)

Double polarization experiments are important. Study of excited nucleon states (N* and Δ^*)

	Photon	Target			Recoil			Target + Recoil				
		_	_	_	_	x'	y'	z'	x'	x'	z'	z'
		_	x	y	z	_	_	_	x	z	x	z
	unpolarized	σ_0	0	T	0	0	P	0	$T_{x'}$	$^{-\mathrm{L}_{x'}}$	$T_{z'}$	$L_{z'}$
	linear pol.	$-\Sigma$	H	(-P)	-G	$O_{x'}$	(-T)	$O_{z'}$	$(-L_{z'})$	$({\rm T}_{z'})$	$(\operatorname{-L}_{x'})$	$(\text{-}\mathbf{T}_{x'})$
	circular pol.	0	F	0	-E	$-C_{x'}$	0	$-C_{z'}$	0	0	0	0
-		•							•			

For observable E

(case of circularly polarized beam and longitudinally polarized target)

$$\frac{(d \sigma_E)}{(d \sigma_0)} = 1 - P_z P_c E$$

NSTAR 2011, May 18, 2011

Experiment for observable E

FROST experiment Nov.3, 2007 ~ Feb. 12, 2008

Photon beam

- Circularly polarized using linearly polarized electron beam
- $E_y = 0.4 \sim 2.4 \text{ GeV}$ (electron beam 1.645 & 2.478 GeV)

Target

- Butanol (C₄H₉OH)
- $P_T = 78 \sim 92\%$ of polarization of free proton

Production

Circularly polarized beam

- 1.645 GeV 1.1 Billion triggers
- 2.478 GeV 2.3 Billion triggers

trigger: at least one charged particle in CLAS 5

NSTAR 2011, May 18, 2011

Circularly polarized photon beam

Bremsstrahlung using linearly polarized electron beam

NSTAR 2011, May 18, 2011

Targets

Butanol (C₄H₉OH)

Dynamic Nuclear Polarization (DNP) technique Length 52.8 mm / diameter 15 mm Holding mode (0.5 T, 28 ~ 30 mK) Relaxation time ~ 2,000 hours Polarization 78 % ~ 92 %

NSTAR 2011, May 18, 2011

Event selection and particle ID for $\gamma p \rightarrow \pi^0 p$

Event selection (1) Drift chamber track (2) Start counter hit (3) TOF counter hit (4) One positive particle Particle ID $\beta_{mean} \pm 3 \sigma$ $\Delta \beta = \beta_m - \beta_c = \beta_m - \sqrt{(\frac{p^2}{(m_P^2 + p^2)})}$

Use missing mass technique

Identify incident photon

NSTAR 2011, May 18, 2011

Missing-mass-squared cut

Missing-mass-squared cut depends on the kinematical bin

NSTAR 2011, May 18, 2011

Cut by mean values \pm 3 σ

10

Target selection

Vertex cut Butanol Carbon Polyethylene

- 2.75 cm < z-vertex < + 2.75 cm + 5.00 cm < z-vertex < + 8.00 cm +14.0 cm < z-vertex < +18.0 cm

NSTAR 2011, May 18, 2011

Scale factor

Assume the bound nucleon reaction in the butanol target is similar to that in carbon target

Negative missing mass square part → only bound nucleon reaction Bound nucleon has Fermi motion

Bump and slope in the negative missing mass square region \rightarrow determine region between -0.2 ~ 0.0 GeV²

NSTAR 2011, May 18, 2011

The George Washington University, Hideko Iwamoto

12

Dilution factor for $\gamma p \rightarrow \pi^0 p$

Use scale factor to multiply carbon events

Cut the missing mass square

by sector and by proton momentum

Free proton

Dilution factor =

Free proton + Bound nucleon

Dilution factor depends on proton momentum

Uncertainties

Statistical uncertainties \rightarrow Use propagation equation $\sigma_{E}^{2} = \left[\left(\frac{\sigma_{D_{f}}}{D_{f}} \right)^{2} + \left(\frac{\sigma_{P_{\gamma}}}{P_{\gamma}} \right)^{2} + \left(\frac{\sigma_{P_{\tau}}}{P_{T}} \right)^{2} \right] \times E^{2} + \frac{(4 N_{1/2} N_{3/2})}{\left[N_{tot}^{3} (D_{f} P_{\gamma} P_{T})^{2} \right]}$

Systematic uncertainties

Electron beam conditions		
Energy of beam	≈ 0.1	%
Beam polarization	≈ 2	%
Beam charge asymmetry	$6 imes10^{-2}$	%
Target polarization	$1.6 imes10^{-1}$	%
Fiducial cut	2.5	%
Missing mass square cut	9.6	%
Scale and dilution factor	13 ~ 18	%

Only statistical uncertainty of asymmetry is shown

Helicity asymmetry E (4) $W, \Delta \cos \theta_{\pi^0}^{cm} = 0.1$

CLAS SAID2009 MAID2007

18

Helicity asymmetry E (5) $W, \Delta \cos \theta_{\pi^0}^{cm} = 0.1$

CLAS

SAID2009

Summary/Conclusion

- The helicity asymmetry E is measured for single π^0 photoproduction with FROST for $E_{v} = 0.5 - 2.4$ GeV.
- At lower E_{γ} (< 1.35 GeV), the model predictions describe the data (cos θ_{cm} - dependence) well.
- At higher E_{γ} (> 1.35 GeV), there are some deviation between model calculations and the data (cos θ_{cm} - dependence).
- Significant deviation is observed at the backward π^0 scattering angle, $-0.50 \le \cos \theta_{\rm cm} \le 0.0$ and all W values.
- Some deviation is also observed at the backward π^0 scattering angle, $-0.80 \leq \cos \theta_{cm} \leq -0.50$ and $1.4 \text{ GeV} \leq W \leq 1.7 \text{ GeV}$.
- The new results help constrain the parameters of the models, such as coupling constants and weight of partial waves. 20

Target selection (2) - helicity states -

Scale factor (1)

Assume the bound nucleon reaction in the butanol target is quite similar to that in carbon target

Negative missing mass square part \rightarrow only bound nucleon reaction Bound nucleon has Fermi motion

Bump and slope in the negative missing mass square region \rightarrow determine region between -0.2 ~ 0.0 GeV²

NSTAR 2011, May 18, 2011

The George Washington University, Hideko Iwamoto

23

Scale factor (2)

The George Washington University, Hideko Iwamoto

24

NSTAR 2011, May 18, 2011

Dilution factor for $\gamma p \rightarrow \pi^0 p$ (2)

Dilution factor =

Free proton reaction

Total nucleon reaction

Dilution factor depends on proton momentum \rightarrow fifth-order polynomial

NSTAR 2011, May 18, 2011

The George Washington University, Hideko Iwamoto

25

Scaled carbon

Butanol

Missing-mass-squared cut

Missing-mass-squared cut depends on the sector and the proton momentum

Mean values \pm 3 σ

Low-momentum protons are more sector-dependent

* sector: proton is detected

NSTAR 2011, May 18, 2011

Protons, especially low-momentum protons, lose energy when they pass through materials surrous surrous ing the target.

Number of events and polarization

- Helicity state of electron beam changes at rate of 30 Hz

- 7 periods have different direction of target polarization

Fiducial Cuts

Remove events that protons are found in inefficient or inactive region of CLAS (places surrounding the coils of the torus magnet and outside the detectors)

The number of events is reduced to 96.3 %

NSTAR 2011, May 18, 2011